$\displaystyle y = A e^{\frac{B}{x}}$
$\displaystyle y = A + \frac{B}{x^2} + \frac{C}{x^4}$
$\displaystyle y = ax^3 + bx^2 + cx + d$
$\displaystyle y = A_oe^{-bx}\sin(\omega x + \delta) + C$
$\displaystyle y = A e^{bx} + C$
$\displaystyle y = A_o \exp\left[-\frac{(x-x_o)^2}{2\sigma^2}\right] + C$
$\displaystyle y = A + \frac{B}{x}$
$\displaystyle y = mx + b$
$\displaystyle y = \frac{A}{1 + \exp(-B(x-C))}$
$\displaystyle y = \frac{A}{\sqrt{(\omega_o^2-x^2)^2 + 4x^2\beta^2}} + C$
$\displaystyle y = A \ln\left[\frac{x}{B}\right]$
$\displaystyle y = A_o\sin(k x + \delta) + C$
$\displaystyle y = Ae^{-\lambda}\frac{\lambda^x}{x!}$
$\displaystyle y = A x^B$
$\displaystyle y = A (x - x_o)^B + C$
$\displaystyle y = ax^2 + bx + c$
$\displaystyle y = ax^4 + bx^3 + cx^2 + dx + e$
$\displaystyle y = \frac{K_0}{18 a_0} x^2 \left( 1 - 2.1 \frac{x}{K_1} \right)$
$\displaystyle y = A\, \mathrm{sinc}{}^2(k_1 (x\!-\!x_o)) \cos{}^2(k_2 (x\!-\!x_o)) + C$
Fit Type
|
|
Fixed
Parameters
|
|